Copied to
clipboard

G = C3×C16⋊C22order 192 = 26·3

Direct product of C3 and C16⋊C22

direct product, metabelian, nilpotent (class 4), monomial, 2-elementary

Aliases: C3×C16⋊C22, D162C6, C486C22, SD321C6, C24.48D4, C12.65D8, M5(2)⋊1C6, C24.67C23, C16⋊(C2×C6), C4○D82C6, D82(C2×C6), C8.3(C3×D4), (C6×D8)⋊24C2, (C3×D16)⋊6C2, (C2×D8)⋊10C6, Q162(C2×C6), C4.14(C3×D8), C2.16(C6×D8), C4.11(C6×D4), C6.88(C2×D8), (C2×C6).27D8, (C3×SD32)⋊5C2, C8.7(C22×C6), C22.5(C3×D8), C12.318(C2×D4), (C2×C12).346D4, (C3×D8)⋊18C22, (C3×M5(2))⋊3C2, (C3×Q16)⋊16C22, (C2×C24).206C22, (C3×C4○D8)⋊9C2, (C2×C8).30(C2×C6), (C2×C4).47(C3×D4), SmallGroup(192,942)

Series: Derived Chief Lower central Upper central

C1C8 — C3×C16⋊C22
C1C2C4C8C24C3×D8C3×D16 — C3×C16⋊C22
C1C2C4C8 — C3×C16⋊C22
C1C6C2×C12C2×C24 — C3×C16⋊C22

Generators and relations for C3×C16⋊C22
 G = < a,b,c,d | a3=b16=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b7, dbd=b9, cd=dc >

Subgroups: 226 in 90 conjugacy classes, 46 normal (30 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C23, C12, C12, C2×C6, C2×C6, C16, C2×C8, D8, D8, D8, SD16, Q16, C2×D4, C4○D4, C24, C2×C12, C2×C12, C3×D4, C3×Q8, C22×C6, M5(2), D16, SD32, C2×D8, C4○D8, C48, C2×C24, C3×D8, C3×D8, C3×D8, C3×SD16, C3×Q16, C6×D4, C3×C4○D4, C16⋊C22, C3×M5(2), C3×D16, C3×SD32, C6×D8, C3×C4○D8, C3×C16⋊C22
Quotients: C1, C2, C3, C22, C6, D4, C23, C2×C6, D8, C2×D4, C3×D4, C22×C6, C2×D8, C3×D8, C6×D4, C16⋊C22, C6×D8, C3×C16⋊C22

Smallest permutation representation of C3×C16⋊C22
On 48 points
Generators in S48
(1 19 43)(2 20 44)(3 21 45)(4 22 46)(5 23 47)(6 24 48)(7 25 33)(8 26 34)(9 27 35)(10 28 36)(11 29 37)(12 30 38)(13 31 39)(14 32 40)(15 17 41)(16 18 42)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(2 8)(3 15)(4 6)(5 13)(7 11)(10 16)(12 14)(17 21)(18 28)(20 26)(22 24)(23 31)(25 29)(30 32)(33 37)(34 44)(36 42)(38 40)(39 47)(41 45)(46 48)
(1 9)(3 11)(5 13)(7 15)(17 25)(19 27)(21 29)(23 31)(33 41)(35 43)(37 45)(39 47)

G:=sub<Sym(48)| (1,19,43)(2,20,44)(3,21,45)(4,22,46)(5,23,47)(6,24,48)(7,25,33)(8,26,34)(9,27,35)(10,28,36)(11,29,37)(12,30,38)(13,31,39)(14,32,40)(15,17,41)(16,18,42), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,21)(18,28)(20,26)(22,24)(23,31)(25,29)(30,32)(33,37)(34,44)(36,42)(38,40)(39,47)(41,45)(46,48), (1,9)(3,11)(5,13)(7,15)(17,25)(19,27)(21,29)(23,31)(33,41)(35,43)(37,45)(39,47)>;

G:=Group( (1,19,43)(2,20,44)(3,21,45)(4,22,46)(5,23,47)(6,24,48)(7,25,33)(8,26,34)(9,27,35)(10,28,36)(11,29,37)(12,30,38)(13,31,39)(14,32,40)(15,17,41)(16,18,42), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,21)(18,28)(20,26)(22,24)(23,31)(25,29)(30,32)(33,37)(34,44)(36,42)(38,40)(39,47)(41,45)(46,48), (1,9)(3,11)(5,13)(7,15)(17,25)(19,27)(21,29)(23,31)(33,41)(35,43)(37,45)(39,47) );

G=PermutationGroup([[(1,19,43),(2,20,44),(3,21,45),(4,22,46),(5,23,47),(6,24,48),(7,25,33),(8,26,34),(9,27,35),(10,28,36),(11,29,37),(12,30,38),(13,31,39),(14,32,40),(15,17,41),(16,18,42)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(2,8),(3,15),(4,6),(5,13),(7,11),(10,16),(12,14),(17,21),(18,28),(20,26),(22,24),(23,31),(25,29),(30,32),(33,37),(34,44),(36,42),(38,40),(39,47),(41,45),(46,48)], [(1,9),(3,11),(5,13),(7,15),(17,25),(19,27),(21,29),(23,31),(33,41),(35,43),(37,45),(39,47)]])

48 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C6A6B6C6D6E···6J8A8B8C12A12B12C12D12E12F16A16B16C16D24A24B24C24D24E24F48A···48H
order1222223344466666···68881212121212121616161624242424242448···48
size1128881122811228···822422228844442222444···4

48 irreducible representations

dim1111111111112222222244
type+++++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6D4D4D8D8C3×D4C3×D4C3×D8C3×D8C16⋊C22C3×C16⋊C22
kernelC3×C16⋊C22C3×M5(2)C3×D16C3×SD32C6×D8C3×C4○D8C16⋊C22M5(2)D16SD32C2×D8C4○D8C24C2×C12C12C2×C6C8C2×C4C4C22C3C1
# reps1122112244221122224424

Matrix representation of C3×C16⋊C22 in GL4(𝔽7) generated by

2000
0200
0020
0002
,
1642
4651
6050
6132
,
1000
0600
0004
0020
,
1063
0232
0322
0112
G:=sub<GL(4,GF(7))| [2,0,0,0,0,2,0,0,0,0,2,0,0,0,0,2],[1,4,6,6,6,6,0,1,4,5,5,3,2,1,0,2],[1,0,0,0,0,6,0,0,0,0,0,2,0,0,4,0],[1,0,0,0,0,2,3,1,6,3,2,1,3,2,2,2] >;

C3×C16⋊C22 in GAP, Magma, Sage, TeX

C_3\times C_{16}\rtimes C_2^2
% in TeX

G:=Group("C3xC16:C2^2");
// GroupNames label

G:=SmallGroup(192,942);
// by ID

G=gap.SmallGroup(192,942);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,365,2102,2524,1271,242,6053,3036,124]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^16=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^7,d*b*d=b^9,c*d=d*c>;
// generators/relations

׿
×
𝔽